New methods to generate massive synthetic networks
نویسندگان
چکیده
One of the biggest needs in network science research is access to large realistic datasets. As data analytics methods permeate a range of diverse disciplines—e.g., computational epidemiology, sustainability, social media analytics, biology, and transportation— network datasets that can exhibit characteristics encountered in each of these disciplines becomes paramount. e key technical issue is to be able to generate synthetic topologies with pre-specied, arbitrary, degree distributions. Existing methods are limited in their ability to faithfully reproduce macro-level characteristics of networks while at the same time respecting particular degree distributions. We present a suite of three algorithms that exploit the principle of residual degree aenuation to generate synthetic topologies that adhere to macro-level real-world characteristics. By evaluating these algorithms w.r.t. several real-world datasets we demonstrate their ability to faithfully reproduce network characteristics such as node degree, clustering coecient, hop length, and k-core structure distributions.
منابع مشابه
Parallel Generation of Massive Scale-Free Graphs
One of the biggest huddles faced by researchers studying algorithms for massive graphs is the lack of large input graphs that are essential for the development and test of the graph algorithms. This paper proposes two efficient and highly scalable parallel graph generation algorithms that can produce massive realistic graphs to address this issue. The algorithms, designed to achieve high degree...
متن کاملParameterized Pattern Generation via Regression in the Model Space of Echo State Networks
Recurrent neural networks capable of sequential pattern generation could facilitate new types of applications like music generation. Here, we explore the capability of echo state networks for parameterized pattern generation and present a new approach utilizing regression in the model space. The goal of the learning is a system that can generate patterns for previously unseen parameterizations....
متن کاملThe Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملGenerating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method
Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.08473 شماره
صفحات -
تاریخ انتشار 2017